

Problem Set 3 (Due on Friday, 10/29)

Problem 1 Let $D(n)$ be the number of derangements in S_n .

- (1) Prove that $D(n) = (n-1)(D(n-1) + D(n-2))$.
- (2) Deduce that $D(n) = nD(n-1) + (-1)^n$.

Problem 2 For each $n \in \mathbb{N}_0$, let C_n be the n -th Catalan number and set $a_n = nC_n$. Find an explicit formula for the generating function of $(a_n)_{n \geq 0}$.

Problem 3 Find an explicit formula for the number of solutions $(x, y, z) \in \mathbb{N}_0^3$ of the equation $x + y + z = n$ satisfying that x is odd, $y > 2$, and $z < 5$.

Problem 4 Let a_n be the number of compositions of n with an odd number of parts such that every part is at least 3. Find an explicit formula (no summation signs allowed) for the generating function of $(a_n)_{n \geq 0}$.

Problem 5 Let t_n be the number of partitions of $[n]$ into blocks of cardinality two. Find the explicit formula (no summation signs allowed) for the exponential generating function of $(t_n)_{n \geq 0}$.

Problem 6 Find an explicit formula (no summation signs allowed) for the exponential generating function of $(D(n))_{n \geq 0}$, where $D(0) = 1$ and $D(n)$ is the number of derangements of S_n .

Problem 7 For each $n \in \mathbb{N}$, let t_n be the number of simple graphs with vertex set $[n]$ with no vertex of degree larger than 2, and assume that $t_0 = 1$. Find an explicit formula for the exponential generating function of $(t_n)_{n \geq 0}$.

Problem 8 Using generating functions, prove that the number of partitions of n into distinct parts equals the number of partitions of n where each part is odd.

Solution. Let $q(n)$ be the number of partitions of n into distinct parts, and let $p_o(n)$ be the number of partitions of n whose parts are odd. Then we see that

$$\sum_{n=0}^{\infty} q(n)x^n = \prod_{i=1}^{\infty} (1 + x^i) = \prod_{i=1}^{\infty} \frac{1 - x^{2i}}{1 - x^i} = \frac{\prod_{i=1}^{\infty} (1 - x^{2i})}{\prod_{i=1}^{\infty} (1 - x^i)} = \prod_{i=1}^{\infty} \frac{1}{1 - x^{2i-1}}. \quad (0.1)$$

Now, observe that the right-most part of (0.1) is the generating function of the sequence $(p_o(n))_{n \geq 0}$. Thus,

$$\sum_{n=0}^{\infty} q(n)x^n = \prod_{i=1}^{\infty} \frac{1}{1 - x^{2i-1}} = \sum_{n=0}^{\infty} p_o(n)x^n.$$

□